.'f}‘m TR A »
TS ot r‘i'n‘_..—
-';;_ [ i L
» 1}

Naval Research Laboratory

Washington, DC 20375-5000

AD-A205 883

NRL Memorandum Report 6410

Low Reynolds Number Calculation of Turbulent Channel
Flow: A General Discussion

R. A. HANDLER, E. W. HENDRICKS AND R. I. LEIGHTON

Laboratory for Computational Physics and Fluid Dynamics

February 23, 1989

DTIC

M ELECTE

Approved for public release; distribution unlimited

'R0

(. MAR 3 0 1909

\k‘ H

\
a o0 O
¢} pead LS S

<

RN




SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION Tb RESTRICTIVE MARKINGS
UNCLASSIFIED

23 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF

2b DECLASSIFICATION  DOWNGRADING SCHEDULE ..
urlimited.

REPORT

Approved for public release; distributioun

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NRL Memorandum Report 6410

5 MONITORING ORGANIZATION REPORT NUMBER(S)

(/f applicable)
Naval Research Laboratory Code 4420

6a NAME Of PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City, State, and 2iP Code)

Washington, DC 20375-5000

7o ADDRESS (City, State, and ZIP Code)

ORGANIZATION (if apphcable)

Office of Naval Research

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
FLEMENT NO NO

Arli Y 2
rlington A 22217 61153N

TASK WORK UNIT
NO ACCESSION NO
RR23~01~41] DN158-015

11 TITLE {Include Security Classification)

Low Reynolds Number Calculation vi Turbulent Channel Flow: A General Discussion

12 PERSONAL AUTHOR(S)
Handler, R.A., Hendricks, E.W. and Lejghton, R.1.

13a TYPE OF REPORT 13b TIME COVERED
Interim frROM _10/88 1o _11/88 | 1989 February 23

14 DATE OF REPORT (Year, Month, Day)

15 PAGE COUNT

107

16 SUPPLEMENTARY NOTATION

17 COSATI CODES

Spectral methods;

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Turbulence aliasing ,  Conditional sampling./- RN

.

‘I\,\

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

strong damping effects on the final steady state turbulent velocity field. -~ . -.

" “  The statistical properties of turbulent flow in a channel at a wall Reynolds number of 125 using a
moderate resolution direct numerical simulation is investigated. We have found that the use of a Green func-
tion method results in turbulent statistics which are significantly closer to experimental results than those pro-
duced by the Orszag-Kells (1980) splitting method. We have found some differences between our calcula-
tions and those of Kim, Moin and Moser (1987) (KMM). Our calculation gives somewhat lower turbulent
intensities and longer streamwise correlation lengths. In general, however, the one and two point statistics
are in good agreement with the KMM results. Conditional sampling calculations on the simulated data indi-
cate a definite relationship between VITA and Q) events. We have also found that aliasing errors cause

B unciassiFepunNuMiTed [ SAME AS RPT [Jovic users | UNCLASSIFIED

20 DISTRIBUTION : AVAIL ABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RISPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code)
R.A. Handler (202) 767-2457

22¢ OFFICE SYMBOYL
Code 4420

DO form 1473, JUN 86 Previous editions are obsofete
S/N 0102-LF-N1%4-FeN1

_ _StCURITY CLASSIFICATION OF THIS PAGE




CONTENTS

INTRODUCTION .o et e e ettt e eenanas I
A REVIEW OF NUMERICAL METHODS ..o 3
24 Y ) 54 1 S TSP 24
1600 )3 (0 MU 1) (63 K PRSPPI 44
ACKNOWLEDGEMENTS ... .ot 45
APPENDIX A — Effects of Aliasing Errors on the Behavior

of Channel Flow Turbulence Calculations ...............coooiiiiiiiiiiiiiiiiiiii e 47
APPENDIX B — Calculation of Energies from Fourier Spectra ..............coooviiiiiiiiiiininininenn.. 55
REFERENCGES ... o e 58

' Accession For

| _eeession pi
NTIS GRA&I 4
TIC TAB 0
Usannoitnced ]

Justifiention ]

Bv__
. Distritution/ e
Lvaileb! lity Codes
T jAve!l andfor
Speaial

1

I
p

Digt

ii




LOW REYNOLDS NUMBER CALCULATION OF TURBULENT CHANNEL
FLOW: A GENERAL DISCUSSION

1. Introduction

Direct numerical simulations (DNS) of tnurbulent shear flows have recently provided
researchers with a new tool that has been used to study the dynamics of turbulence
in great detail. In some cases these calculations have provided information that would
be difficult or impossible to obtain from experiments and in other cases they have
provided new results that were latter confirmed by experiments. At the Naval Research
Laboratory, we have recognized that DNS may provide new insights into problems that
are of particular interest to the Navy. Problems to which DNS may be applied in
the future include investigations of the sources of turbulent flow noise. the physics of
polymer-induced drag reduction. and turbulence-frec surface interactions. However,
in order to embark on a detailed study of any of these complex problems, it is first
necessary to establish confidence in our ability to perforin meaningful simulations of
turbulence in relatively simple cases.

The channel geoinetry has been chosen by many investigators as a starting point for
DNS wall-bounded shear flow calculations Lecause of both its geometrical simplicity and
the ease with which it can be handled numerically. However, in spite of its simplicity,
intense investigations of the high resolution calculations of Kim. Moin and Moser(1987)
(KAL) . for example, have yet to unequivocably unravel the spatial and temporal
evolution of the colierent vortical strnetures which experimental evidence suggests have
their origin near the wall. Thercfore, the complex plysics of even this simple wall-
bounded shear low. it seems. warrants continued inteusive investigation in the hope
that such studies may reveal more details of fundemental wall turbulence phenomena
of which. perliaps the most important is the nature of the Reynolds stress producing
events. We have therefore undertaken. in the last fow vears. an effort in DNS which
parallels. in some respects. the efforts of other groups for the purpose of eventually
applyving these methods to attack the more complex problems mentioncd above, In

this report we review the progress that Las recently been made at NRL in moderate
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resolution. low Reynolds number DNS channel flow calculations. In the future we will
report on progress that has been made in applying DNS to more complicated geometries
and on the results of higher resolution calculations.

In Section 2 we review the numerical methods that have been used to perform DNS
calculations of turbulence. I particular, we discuss the difficultics associated with oper-
ator splitting methods and the metliods that have been devised, such as Green function
methods. for overcoming operator splitting errors. We also propose a modification of
the original Green function method devised by Marcus(1984) which we will analyze
and test in future investigations. We also discuss methods that have been devised to
solve the equations of motion without resort to splitting. We conclude Section 2 with
a review of the computer codes that we have used and note the algorithms upon which
cach is based. We have created numerous datasets which cover differing length and
time scales which can be used for distinetly different purposes. The attributes of each
dataset 1s listed at the end of Section 2.

In Section 3 we discuss one and two point statistics from several datasets and also
present some preliminary conditional sampling results. We find that in spite of the low
resolution of our calculations, our results compare well in most respects to the higher
resolution calculations of IKMM and also with experiments. We note, however, that
our computations give somewhat lower intensities and somewhat longer streamwise
length scales than the KNI results. We speculate on several possible reasons for these
differences.

We alzo include. in Appendix AL a diseussion of the cffects of aliasing errors on the
long-time behavior of the ealeulations. We present evidence that the nunerical solu-
tions to the Navier-Stokes equations may be severely and adversely affected by aliasing
errors. The evidence preseuted indicates that if these errors are not removed, the solu-
tion reachies a chaotie steady state which s remarkably similar to a weak transitional

turbulent flow. That 1s. we hiave found that aliasing errors have a damping cffect on

the turbulence whicl has vet to he nunderstood.




2. A Review of Numerical Methods

Here we review the principal numerical methods that have heen employed in the di-
rect numerical simulation of turbulence by nunicrous investigators over the past decade.
We place special emphasis on a review of the methods that have been used in the sim-
ulation of wall bounded turbulence. Orszag and Patterson (1973) performed the first
simulation of homogenous isotropic turbulence which required 323 grid points. A spec-
tral Galerkin approach was emyp loyed in whicl trigonometeric functions were used. The
next major direct simulation was the turbulent channel dow calculation of Orszag and
Kells(1980) and Orszag and Patera(1983). In these simulations one homogenous coor-
dinate using trigonometric functions was replaced by Chebyshev polynomials. In the
first paper. the problem of transition to turbulence in a channel gecometry was studied.
and in the second, the study was extended to turbulent flow. At the same time there
was work being done at NASA Ames (IXim and Moin(1982)) and other institutions on
large eddy simulations (LES). LES involves many of the same numerical techniques. but
includes a term in the Navier-Stokes equations which models the unresolved turbulent
length scales. ,

The next major step in direct simulations was taken by Marcus (1984) and Schu-
mann (1985). This improvement iuvolves the use of Green functions or so-called in-
fluence matrix methods to improve the implementation of the boundary coaditions.
This method improves the convergence properties of the carlier methods and will be
discussed in detail shortly. Marcus applied this method to the Taylor-Couette problemn
and satisfactorily predicted wave speeds. Schumann applied his version of this method
to turbulent channel ow.

There are difficulties in the above methods related to satisfying the incompressibil-
ity condition which cannot easily be overcome. An alternative is to rewrite the Navier-
Stokes equations as a fourth-order equation for the normal velocity and a second-order
equation for the normal vorticity. In this form. the equations are more difficult to solve,

but incompressibilty is satisfied implieitly,




2.1 Governing Equations and the Channel Flow Geometry

We are particularly interested in studying turbulent flow between two rigid parallel
walls. This choice represents a compromise between scientific interest and numerical
effort. The streamwise coordinate is x or r;, the wall normal coordinate is y or x,
and the spanwise coordinate is z or x3. The computational domain used throughout
this work, in terms of channel half-widths, is 2 in the wall normal direction and 5
in both the streamwise and spanwise dircctions. All calculations are performed with
Chebyshev polynomials in the wall normal direction and Fourier series in the streamwise
and spanwise directions.

The governing equations for this problem are the Navier-Stokes equations in the

so-called rotational form:

Jdu u-u 1
Yrv _ N v =
ot uxw (p+ 2 )+Re

Viu+f, (2.1)

and the continuity equation,

V.ou=0. (2.2)

In these cquations, p + % is the dynamic pressure hiead, Re is the Reynolds number
based on channel half-width and friction velocity, and f is a body force.
It is possible to climinate the pressure from the above equations. This results in

the fourth order equation:

Jd_. 1
L, = Ny =V, 5
Of\_/ "y u + R(V Uy, (2.3)
wlhere
0.2 02 o
N, = , - 29 |
(01f+0.r,€)(ux w) - all(ux w);+013(ux w),}




for the normal velocity. In addition there is a second order equation for the normal

vorticity:

0 1
—wy =N, — V2, 2.4
ot ° e T Re Ve (2:4)
with
.'\'—,_‘_‘2 = 5-1—3(11 X (d)l - *(j?;(ll X w)3.

In this formulation the flow conserves mass implicitly.
For all the schemes. no-slip boundary conditions are imposed at the walls. From

the continuity equation it follows that an additional boundary condition at the walls,

0(12
0.1‘2

=0on xry = %1,

can be derived. This boundary condition is nceded when solving the fourth order
equation for the normal velocity. In the streamwise and spanwise direction the use of
trigonometric functions requires periodic boundary conditions.

There are several ways to non-dimensionalize the Navier-Stokes equations. The two
methods used currently are inner scaling and outer scaling whose definitions are given
in Table 2.1. When describing turbulent physics close to a wall the only parameters
available that can be used to form length and time scales arc the viscosity and the
wall shear stress. For inuer variable scaling we define the friction velocity, u*, a length
scale, I*, and a friction or wall Reynolds number, R*. This scaling is the appropriate
one when discussing the flow behavior in the viscous sublayer, the buffer layer and to
some extent the logarithmic layer.

When deseibing the physics far from the wall. outer scaling is used. In turbulent
chanuel flow the outer scales are usually taken to be the mean centerline velocity, Uy,
and the channel half-width. L,. Outer scaling is appropriate when discussing the large
scale properties of the flow. In the crrrent state of direct simulation, the core region
of the flow is small and this scaling i« not as effective as inner scaling. In turbulent

transition studies outer scaling, however. is more appropriate.




Table 2.1

Non-dimensionalizations

Variable Inner Scaling Outer Scaling

. . i ks
\ Cl()('lt}' ut = I’l'(;—;‘,;lu'ull Cet
Length = [ L,

ey lwatt

Viscosity v v
Revnolds " = f'—Tl—‘ te = ’—‘f,—]‘
Number

When iuner scaling is used, the driving force can be related to the mean wall shear
stress (and the friction velocity) in the sense that the wall shear stiess will converge
asymptotically to or rather oscillate about a mean value. The wall shear stress and the

friction velocity can be related to the driving force in the following manner:

Jdu _dpy
Ory ' duy

*2
U =V

where Py is the static pressure. A large seale veloeity is not specified since it is not
needed. When outer scaling is used this relationship mnst hold. hut there is the ad-
ditional need to speeify a large seale veloeity, Sinee there is no unique relationship
between the mean turbulent centerline veloeity anud the wall shear stress. the most nat-
wral veloeity to choose is the initial mean eenterline veloeity, Sinee our main interest
is fully developed turbulence and not tnrbadent trancition, all further disenelow will

be i the context of inner sealing.
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2.2 Time Stepping Methods

The incompressible Navier-Stokes equations form a non-linear coupled set of partial
differential equations. There are two major difficulties with these equations when trying
to select a time-stepping scheme: the non-lincarity of the convective term and the
enforcement of the incompressibility condition. These two problems are handled in
very different ways. The extreme complexity of the nou-lincar term makes treating it
implicitly very unattractive so that it is generally handled with an explicit or so-called
semi-implicit numerical method. |

The second problem. euforcing incompressibility, is equivalent to solving the time
dependent Stokes problem. The Stokes problem is the Navier-Stokes problem with the
incompressibilty equation but with no convective term. The statement of this problem

1s given as follows:

Jdu 1 _,
Iz _ = 5
5 Vp+ Re\‘/ u, (2.5)
V.u=0 (2.6)
and
u=0on r; = x1. (2.7)

- There are two methods for dealing with this problem: the split schemes and the
unsplit scheines. In the split schemes the coupled linecar Stokes equations are separated
- mto a pressure step and a viscous step. The incompressibility condition i1s enforced
during the pressure step. In the unsplit schemes a fourth order equation for the vertical
veloeity is formed. It satisfies the incompressibility condition implicitly. Note that
even the nnsplit selieme requires the splitting off of the non-linecar terms. The ‘split” or

‘unspht” character of a scheme in tiie context of this paper refers only to the algorithin
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used to solve the Stokes problem. A variery of split schemes are used in the computer
codes for turbulence simulation now operational at NRL and a code using the unsplit

scheme 1s now under development.
2.2.1 Time Split Methods

The motivation for using the spht scheme is numnerical simplicity and efficiency. It
involves reducing a complicated set of conpled equations into a simpler set. Unfortu-
nately. the simplification oceurs at the experse of an improper implementation of the
boundary conditions. In the Stokes problem deseribed above. the pressure field exists
to satizfv the incompressibility condition. Each of the time-dependent equations is a
second order equation with two houndary couditions: the zero veloeity condition at
r2> = £1. They form a coupled. bur closed set of equations. We do not wish to solve
this coupled set of equations.

The Stokes problem can be simplified by splitting it in two parts as follows:

The incompressibility step is.

(%l; =~ Vp. (2.8)
V-u=1(. (2.9)

and the viscons step is
u=>0on., =+l (2.11)

The sphitting secheme introdnees distinet time stepping errors (Orszae, Isracli and Dev-

le 19377 which donunare those of the viseid or inviseid problems. Thercfore there is

on




no advantage in specifving a high order time stepping scheme. In addition, the steep
spatial gradients near the walls require a fine mesh and these terms must by handled im-
plicitly in order to avoid a strong time step constraint. Typically, an Adams-Bashforth
scheme is used for the nonlinecar terms and an implicit Euler method for the linear
terms. A Crank-Nicholson scheme may also be used.

We note that boundary conditions have not vet been specified for the incompress-
ibility step. The only proper boundary condition is the no-slip condition imposed after
the pressure step (Marcus. 1984). However, a boundary condition must be specified at
the intermediate step. In this step there are four cquations for four unknowns and they
can be solved for a single variable which is either pressure or normal velocity. Solving
for the pressure field results in a Neumann problem while solving for the normal ve-
locity leads to a Dirichlet problem. There is no difficulty in specifying the boundary

conditions for the linear viscous step.
A. Dirichlet Methods

The original Orszag-Kells(1980) algorithm for simulating turbulence between flat
plates uses a normal velocity formulation to satisfy the incompressibility condition. The
semi-implicit Adams-Bashforth Crank-Nicholson scheme, which will be described later,
is used to treat the non-linear term. A backward Euler scheme is used in the pressure
and viscous steps. Due to a strong memory constraint, an explicit Adams-Bashforth
scheme is used in all the algorithms discussed in this work, although the treatment of
the non-linear term is still under study. When the non-linecar terms are included. the
three steps in the algorithm can be written as follovs:

(a)the non-linear step:

u—n" 3 n 1 n—1
Y2 _§F _§F (

o
—
o

where

F=ux w+f




(b) the pressure step: .

Vi, = (0—017 + %)fu - %(T‘Zlal + 0%@) (2.13)
{12 =0on ry = +1.
and (c)the viscous step: )
u'tlt —q 1 .
— = Evzu"“ (2.14)

u"t! =0on x, = £1.

Note that only during the intermediate pressure/continuity step is the continuity equa-
tion satisfied. while only at the end of the viscous step are the boundary conditions
properly satisfied. This inconsistency can be scen by examining the normal momentum

equation of the continuity step:

l:lg = lAg — At a ﬁn+1. (215)
0.1'2
where IT = p + 2% which implies that at the walls
9 . i
S = IZI? on s = £1. (2.16)

This is not cousistent with the Navier-Stokes equations for the normal momentum
evaluated at the walls aud has the effeet of introducing spurious pressure forces at the

walls.
B. Nenmann Methods

A bonndary condition for the pressure field can be developed based on the as-
sumption that at high Revnolds nunbers. the inviseid boundary conditions are good
approximations.  From the Navier-Stokes cquation in the wall-normal direction the
following boundary condition can he developed:

d 1 0°
I

s = Eﬁ”! on ry = %1, (

o
—
-]
—

10
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which in the inviscid limit becomes

7]
a——H =0on 2, = +1. (2.18)
T2
The complete algorithm is given by:
(a) the non-linear step:
u-u" 3 n 1 n—1
o )F 7F . (2.19)
(b) the pressurc step:
V2t = V'Z% (2.20)
Hn+1
—a—a—— =0 on xy = +1.
R
and (c) the viscous step:
n+l _ &
w -u = Lz (2.21)
At 12

u"t' =0on 1y = £1.

From (2.20), the pressure boundary condition implics

lg = [1-2 on rq = +1. ( .

o
[\
V)
Nt

We find. therefore, that there is a fictitious flow through the boundary during the
incompressibility step. One way to avoid this difficulty is by using a Green function

approach.
C. Green Function Methods

The difficulty with the Orszag-Kells algorithm is the lack of proper boundary
conditions at the intermediate pressure step. In an atteinpt to minimize the errors
induced by these difficulties, Marcus (1984) developed a Green function method to add
a correction to the caleulated pressure field. He solved the incompressibility step for the
pressure and made the observation that the pressure step is a linear non-homogeneous

problem with non-homogeneous boundary conditions. The solution can then by divided

11
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into three parts: one which satisfies the inhomogencous equation with homogeneous
boundary conditions and two other solutions which satisfy the homogencous equation

with non-homogeneous boundary conditions. Let

Hn+1 — ﬂn+l + HZ.H.I (223)
where TI"*! is the solution to
AtV = Vg, (2.24)
subject to
"t =0on s = 1, (2.25)
and
VI, =0 (2.26)

subject to inhomogenous boundary conditions at the upper and lower boundaries. The
boundary conditions for the pressure correction can be found by substituting (2.23)

into (2.20) and evaluating them at the walls subject to
ubtt =0 on xy = £1. (2.27)

This leads to the following condition:

Jd R At
At=—TI"*" = 4, + =—V2u"* on xy = £1. (2.28)
0.1'2 RC -
or
0 At _, J .
At—TI"*t = 4y, + == V2t o A —T1"F!, on vy = +1. (2.29)
Jxy Rc - 29

Note that uyt! is not known during the incompressibility step. However, Marcus

asserts that this boundary condition is true if and only if:
Vou"t = 0.2 = £1. (2.30)

12




To satisfy these boundary conditions, the Laplace equation for the pressure corrections
is solved for arbitrary Dirichlet boundary conditions. The solution can be written as

(following Marcus’ notation):

HZ_H(T'L k‘l‘] . k.l‘a) = a;z+l(k1'1 L] I\‘):;; ),\'1(‘1‘2~ ]“1‘1 k) A‘.Is) + a;+l(k1‘1 k) kra)X2(1’2, kl‘l k) kl‘a)
(2.31)

where v; and Y2 are solutions to the Laplace equation with the following boundary

conditions:
1, a2 =1,
A1 = {0 1; _ (2.32)
and I
o]0, ar=14
AL U SO

Note that they are independent of the fluid flow and need to be calculated only once.

Then lct

=+ i, (2.33)
where
G =a— At VII"H, (2.34)
and
e = —At VIITH, (2.35)
The final viscous step is
At z At R
wytl =1 - E—\_’Z]_lflg +[1- I—?zvz]_lﬁc, (2.36)
where
AN U
uitt =11 - EV']_lfll.
and
At .
ugtt =1 - —E;V"’]—‘lig.
13




The operator 1 — %Vz is inverted using the proper Dirichlet boundary conditions.

“+1 n+1

The remaining undetermined coefficients «f™" and a7™" are found by applying the

boundary condition given by (2.27).
D. A Proposed Alternate Green Function Method

The Green function formulation developed by Marcus is only a correction to the
splitting algorithm and still suffers from one of the main difficulties associated with
splitting schemes. Since the Navier-Stokes equations consist of three second order
operators (threc momentum equations) they form a sixth-order system and therefore
require six boundary conditions for their solution. In the time splitting algorithms
there are usually four second-order operators with a total of eight boundary conditions
which must be solved. The Marcus correction improves the splitting algorithm, but
does not correct this problem.

The following algorithm is an attempt to solve this problem. The proposed algo-
rithm requires six boundary conditions and only three Poisson equation inversions. It
has not been implemented to the best of our knowledge nor has the algorithm been an-
alyzed for stability or accuracy. The algorithm is similar to that of Marcus in its use of
Green functions. It is included here since it may be the basis of transition calculations
using non-Newtonian constitutive equations. In the next section an algorithm will be
presented which is better than the split algorithms but it should be recognized that for
complex non-linear constitutive equations in non-Newtonian flows a split scheme may
be more manageable.

The objective is to solve for the normal velocity in the continuity and viscous steps
using botli zero flow and zero flux boundary conditions applied after the viscous step.
This ean be accomplished through the use of Green functions which couple these two
steps through the houndary conditions. The Green functions must be evaluated and
the accompanying cocefficicnts must he determined to satisfy the boundary conditions.
The updated streamwise and spanwise velocities can then he computed at the conti-

nuity step. No bonndary conditions will he imposed at this step. The remaining two

14




equations in the viscous step for the spanwise and streamwise velocity can be combined
to form an equation for the normal vorticity. Solving for the normal vorticity requires
only one Poisson inversion and two boundary conditions. The boundary conditions can
be derived from the remaining no-slip boundary conditions. The application of two
sets of boundary conditions in the normal velocity problem is not improper since two
sets of second order problems are being solved. The result is the same order as the
original problem and there is no need to invent boundary conditions for the pressure
field. By solving the problem in this fashion, a boundary condition for the pressure
field is never specified. The use of a no flux boundary condition is consistent with
enforcing continuity at the wall. The accuracy and stability of this scheme has not yet
been determined. The Green function code currently being used will be modified to

test this algorithm.

The unsplit schemes are preferable in that they satisfy continuity implicitly and
the normal velocity and normal vorticity are uncoupled if the non-linear terms are
neglected. The fourth- order problem is solved using several auxiliary problems and
the second-order problem for vorticity is solved directly. This formulation was first
discussed by Orszag and Patera (1983) and later implemented in a simpler form in
the large-scale direct simulations by Kim, Moin and Moser (1987). It is the latter
formulation that will be used.

Using the Crank-Nicholson scheme for the lincar terms and the Adams-Bashforth

scheme for the non-linear terms, (2.3) and (2.4) can be rewritten as

At At At
(1 - ﬁW)V?u;’“ =(1+ ;ﬁzvﬂv"’ug + 7(3]\7;12 — Arlrllz—l)’ (2.37)
and
At At At
(1- OREVZ)w;‘+‘ =(1+ Wv%g + S (3NI, = N2TY, (2.38)




where the known terms have been moved to the the right hand side. These equations

are subject to the boundary conditions:

Oug
0.1'2

Uy = =wy=0o0nry, = £1.

(2.39)

The vorticity problem is an inhomogeneous Poisson problem with homogeneous bound-

ary conditions. It can be solved relatively easily. A Chebyshev-Tau method will be

used. The vertical velocity problem can be solved if it is broken into a homogeneous

problem and two inhomogenous problems:
u"th =gt 4+ atult faTut,
which satisfy the conditions
Up =uy =u_=0onxy = %1,

and
9 + - _ . —
51;(11,, +aTupr +a u_)y=0o0n ry = +1.
To solve these problems, introduce the auxiliary variable ¢ such that

C"+l = V2u," 1,

Then the particular problem is

At 2y n+l At 2\ n At AT An—1
(1= 5 VIG™ = (14 5o V2" + (BN = N,

and
2 n+l __ i+l
Vo, = ("

subject to

ul’j“ =0onaoy; =+£1.

anc

"t =0on ey = 1.

IJ
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Then the particular problem for satisfying the upper boundary condition is

At

— T gen+l
- 5R VT =0, (2.48)
and
Viugrt=ar, (2.49)
subject to
it =0on 2p = £1, (2.50)
with
~n+1 __ 1, lf Tp = 1; ;
T {0, if 0y = —1. (2.51)

Then the particular problem for satisfying the lower boundary condition is

At _,
1— 5 VA = 2.52
(= opeV =" =0 (2.52)
and
VAT = (1, (2.53)
subject to
u"*t1 =0 on T = +1, (2.54)
~ 0 lf Io = 1
n+1 — . 2 ) —
o~ { 1, if T9 = —1. (--50)

Given the solutions to the auxillary problems, (2.42) can be used to find the unknown

coefficients at and a ™.
2.3 The Non-Linear Term

Treatment of the non-linear term in the Navier-Stokes equation has two difficulties.
The first is the evaluation of its spatial character. Originally. Orszag and Ixells(1980)
snggested the use of the so-called rotational form of the Navier-Stokes equations in
which the non-linear term is written as ux w. The objective was to recast the non-linear

term in a quasi-conservative form as suggested by Fornberg(1973). If the calculation

17




is not dealiased this form may not be quasi-conservative. As discussed in Appendix A,
the use of this term with and without the aliasing terms leads to significantly different
results. Horiuti (1987) and Zang(1988) have studied this problem numerically and both
suggest that if the calculation is not de-aliased then there are better forms for the non-
linear term than the rotational form. All the simulations currently being preformed at
NRL are de-alaised.

As discussed earlier, there are two different time stepping schemes used for the
non-linear term. If the non-linear portion of the time split Navier-Stokes equations is

written as

OJu
— =uXx w, 2.56
ot (2.56)
then straight forward application of the Adams-Bashforth scheme is
a—u" 3 1 1
_ Z2pn _ Zpn-—- D)

where F 1s the non-linear term. In order to reduce the convective instability of this step
Orszag and Kells (1980) suggested rewriting the non-linear step by adding U(.rﬂ%
to both sides of (2.56). The left hand side is treated using the Crank-Nicolson implicit
scheme and the right hand side by the Adams-Bashforth scheme. The resulting time
stepping equations are:
u—u" 3

n 1 n—1 1 LT
KV, :EF —EF —EL(IZ)(

gar+l _ gan  garT!

0.[‘1 T 0.1', 0.1‘1

(2.58)

Note that the semi-implicit sclieme requires an additional six variables. If the interme-
diate results 0" and a7~ arve not used the order of accuracy is reduced to O(At). Due
to the large memory requirement. this selieme is not wsually used.

2.4 Speetral Metliods

Here we give only a brief snnunary of spectral methods necessary to desceribe the

different computer codes currently at NRL. The reader is veferred to several complete




reviews of spectral methods (Gottlicb and Orszag, 1978, Gottlieb, et al., 1984 and
Canuto. et al. 1988) for more detailed descriptions.

The Navier-Stokes equations are discretized in the planes parallel to the walls
using a Fourier pseudo-spectral scheme. In the direction normal to the channel walls
Chebyshev polynomials are used. Neumann or Dirichlet boundary conditions can be
imposed at the wall. In the flow direction and in the spanwise direction periodic
bouundary conditions are used and this facilitates the use of a trigonometric Fourier

series in these directions. The vclocity field is represented as

AM[-1 N-1 P

u(x,t)= Y Y Y d(m,n,p.t)exp(i(am + Bn))Tp(z2), (2.59)

m=-—A n=—-N p=1

where a = fT"l, 8= LQT’; and i = /—1.

The algorithms described above require at least four Poisson solutions. For exam-
ple in the Dirichlet /normal velocity formulation a Poisson equation is inverted for the
normal velocity in the pressure step and three Poisson equations are inverted during
the viscous step to update the three velocities. In the operational computer codes at
NRL two different methods are used in inverting the Poisson equation. They are the
collocation and the tau methods. In the collocation method an interpolating polyno-
mial is used to convert continuous equations in space to discrete equations. It can be
shown that this is formally equivalent to taking a discrete cosine transform of the data
at the collocation points. If C is the matrix representation for the discrete Fourier
transform, C~! its inverse and D the discrete derivative operator in matrix form (Got-

tleib, et al. 1984). then the matrix operator. M, which takes a real space function into

the derivative of the real space function is:
M=C"'DC
. and the second derivative operator is simply

MM.
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The boundary conditions can be built into this matrix and the solution to the Poisson

equation 1s the solution to:

M?u = s.

where u is the solution and s is some source term. Since MM 1s a full matrix. normal
numerical methods are not effective. Haidvogel and Zaug (1978) describe a method of
decomposing the full matrix into eigenvalues and eigenvectors. Then the inversion be-
comes a simple matter of matrix multiplication. After the decomposition. this method
1s fast and retains the infinite order accuracy of spectral methods.

In the Tau method. the solution to a problem with its boundary conditions is
represented with n+ & expansion functions. The cocfficients are found using n equations
derived from the governing equations and & equations derived from the & Houndary
conditions. The solution is represeuted in Fourier-Chebyshev coefficients. In the case
of the r, direction. the Poisson equation can be rewritten as a quasi-tridiagonal system
that can be efficiently solved with a modificd Gaussian climination algorithm. The

boundary conditions are explicitly built into the matrix operator.
2.5 Computer Codes and Data Sets

There are four operational computer codes for the direct simulation of turbulence
i a channel currently in use at NRL. The first two listed in Table 2.2 were written
by Orszag and his students using the Orszag-IKells algoritlin (Dirichlet boundary con-
ditions in the pressure step). In the first program. a very clever method is used to
manage the memory and input-output (i/o). Only a quarter of the computational do-
main is I computer memory at any thme. and to prevent wasted i/o time this time
had to be minnnized and carefully overlaid by concurrent epu time. In the second and
remaining computer codes. the data is always resident in the computer memory. The
last two operational computer codes were developed by John MceLaughlin (Clarkson

University). and extensivelv updated by and obtained from Steven Lyvous and Thomas
\ Y] A )
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Hanratty (University of Illinouis). The fourth computer code uses the Green function

algorithm developed by Marcus.

Table 2.2
Computer Codes For Turbulent Channel Flow

Number  Split/Unsplit Boundary Conditions Memory Status Author
1 Split Dirichlet Out of Core  Operational 1
2 Split Dirichlet In Core Operational H
3 Split Neumann In Core Operational o
4 Split Neumann with In Core Operational o

Green's Functions

3 Split Neumann with In Core Under <
Green’s Functions Development
6 Fourth Order Dirichlet and Neumann In Core Under ]

Development

7 Orszag, Kells and Patera
1 Orszag, Bullister and Pelz
0 McLaughlin

o Leighton and Handler

® Ilandler, Leighton. Swean and Wang

There are two channei codes under development at NRL. The first is an adaptation
of code 4 using the alternate Green Function algorithm described in Section 2.2.1.d.
The second and more important one is based on the fourth order algorithm. Much of
the work for both has been completed, and both should be in the testing phase by the

end of calender year 1988.




Currently. there are four distinet datasets which exist or will exist in the near
future. Each of these datasets may have more than one entry which will depend on
the resolution in time. There are an additional two datasets. A and DAG. The former
was a high resolution simulation which still contained aliasing errors. See Handler,
Leighton and Carroll(1987) for a discussion of this dataset. Program 4 was run for
a short time ( 100¢*). in order to develop data for determining mean statisties. The
short run time will have an effect on the mean statistics. but is long enough to get a
fair idea of the flow properties. The remainng datasets are to be written to tape using
the PDSDUMP routine on the Cray and can be brought up when needed.

[n the datasets Chan? and Chan3. the difference in time scales between entries was
chosen to be about a factor of ten. The Chani. 1. i=1-3 daraset ave used for documenting
the long time averages. evaluation the proper orthogonal decomposition. and similar
processes where statistically independent realizations are needed. The Chani.2 datasets
are for use in conditional sampling. flow visualization and for following the general
evolution of the flow. Dataset Chant.1 and Chani.3 . i=2.3 are for following the details

of temporal evolution.
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Table 2.3
Data Sets For Turbulent Channel Flow

Name Domain T Resolution R* Ato  Program Status

(v.z,x) {(Ny.Nz.Nx)

Notes

A - 255 65.123.64 165 - 1 deleted
Chanl.1i 2.5.5 33.64.16 125 100 3 exists
Chanl.2 255 33.61.16 125 1 3 oxists
DAG 253 33,6416 125 ! 4 exists
Chan?2.1 2.5,10 33.6:1.32 125 50 4 exists
Chan?2.2 2,5,10 33,61.32 125 2 -+ exists
Chan2.3 2.5.10 33.64.32 125 0.2 4 exists
Chaud. ! 2.5.10 65.61.64 150 50 4 planned
Chan3.2 2.5,10 65.,6:1,6: 150 2 4 planned
Chan3.3 2.5.10 65,64,64 150 0.2 4 planned
Chant.1 25,5 65.64,32 125 0.1 4 exists

7 Based on channel half width, Ty X 1] X I3.

O Planar Data Only.

0 Tune between realizations, all datasets three dimensional except Chanl.2.
oA l~o called DA rext

- See Handler, Leighton and Carroll {1987)

Highly Aliased
28 realizations
2800 realizations ¢
Diagnostics only
50 realizations
500 realizations
128 realizations
50 realizaticns
500 realizations
128 realizations

200 realizations




3. Results

3.1 One-point statistics

In this section we will compare the one-point statistics computed from the the
dealiased (DA) and the dealiased-Green function (DAG) datasets, whose characteristics
have been disscussed in Section 2.3, with experimental data and with the IKNMM results.
For any given component of velocity (or vorticity), which we will designate as v for
convenience, we compute the mean value, 7. the mean-square value. u?. the skewness,

u3. and the Hatness. wt. as follows:

N
Taa) =1/NY <l >, (3.1)
=1
— A’\. . .
u(ry) = 1/‘\'2 < (u =< u! >)? >, (3.2)
—
—_— ‘\" . .
W) = 1/.\'2 < (W —-<uw >)P >, (3.3)
J=1
and N
wl(ay) = 1N < (= <ul >) >, (3.4)
J=1

where <> signifies averaging over a horizontal plane and the index j identifies each of
the N realizations of the flow. Unless otherwise noted, we use the friction velocity, u*,
and the viscous length. I*. as defined in Section 2.1 to make all variables in this and
subsequent sections nondimensional. We use the convention that any variable with a
raised asterisk has heen made nondimensional using viscous units.

A typical turbulent velocity profile should exhibit four distinct regions which are
nawmed. in order of inereasing distance from the wall: the sublayer. buffer layer . loga-
rithmie region . and the core. It can be shiown from theoretical considerations, (see for
example Tennekes and Lumley. 1975) that the sublayer velocity profile must be of the
form 1% = 25* and that a logarithmic region must exist for which v, * = Aln(r2*)+ B.
Hussain and Reynolds (1975) assert that in fully developed channel flow 4 = 2.44 and

D = 5.0 although there is some scatter in the experimental estimates given for these
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constants. The mean velocity profile obtained from the DA dataset is presented in
Figure 1 along with the profiles from Hussain and Reynolds and KMM. We find that
the DA dataset gives good agreement with the experimental result and the higher res-
olution calculations. The logarithmic layver in the curreut calculation is not as thick (in
viscous units) as in the KNI result. This is a direct consequence of the wall Revnolds
number difference (125 for DA and DAG and 180 for KN since the wall to the cen-
terline distanc in viscous units is equal to the wall Reynolds number itself. It does not
appear. however. that the logarithmic layer from the DA dataset is as clearly distinct
from the buffer layer as in the experiments or the NN calculations.

The intensity profiles for the DA dataset are shown in Figure 2. The peak in
the intensity of the streamwise component of velocity occurs at a distance of 14.76
for the DA data which is in excellent agreement with KMAI and the experiments of
Kreplin and Eckelinann(1979) but the peak intensity level is somewhat lower than
either IKMM or experiment. The DA and the KNI spanwise and wall-normal velocity
intensities are both considerably lower than the experimental results. (IKMMI reference
the work of Perry. Lim and Henbest(1983) who maintain that cross-contamination
in hot wire measurements may be the cause of the higher wall-normal and spanwise
velocity intensities measured by many investigators.) Farther from the wall the DA
results show slightly lower intensities than the KNI results. We also note that there
is an unusually high value of the wall normal velocity intensity at a distance of 2.4.
This is an artifact of the application of a Neumann boundary condition on the pressure
in the Orszag-Kells algorithm which has heen discussed in Section 2.2.1.h.

The mean velocity profile and turbulence computed from the DAG dataset. which
was generated using the Green function method discussed in Section 2.2.1.c. are pre-
sented in Figures 3 and 4. The DAG mean velocity profile exhibits a more clearly
defined logarithiie layver than the DA profile and there are significant improvements in
behavior of the intensities. First. the streamwise veloeity intensity has increased and
is now very close to both KA and experiment. Secondly. the artifact produced near
the wall i the wall-normal veloeity component has now vanished due to the Green
function correction which msures enforecement of continuity at the wall. This implies

that wall normal derivative of v, must vanish at the wall. There 15 also a marginal




increase 1 the wall-normal velocity mtensity and a somewhat larger decrease m the
spanwise velocity intensity,

In figure 3 we compare the Revnolds stress computed from the DA data with the
KN data and the experimental data of Eckelmann(1974) who made measurements at
R* values of 142 and 208, The DA resulrs (recall that these calculations were performed
at 1* = 125) are in reasonable agreenient with the Eckelmann (R* = 142) results hut
arc considerably lower than the KN results (R* = 180) and the higher Revnolds
number experimental values. In Figure 6 the DAG results show somewhat better
agreement with the lower Revnolds number experimental results,  This comparison
suggests that for the relatively weak turbulence represented in the DA and the IKNINM
data that some of the discrepancy hetween these calculations may be due to Reyvnolds
number differences.

From this point on (Figues 7-16) we will make comparisons ouly to the DAG
datasets. In figure 7 thie correlation coefficient (Reynolds stress normalized by the
relevant root mean square amplitudes) shows the same sharp peak near the wall as in
the INNAD data although its value is somewhat higher. This is clearly « rcflection of
the lower turblence intensities in our caleulation. We note however that the peak near
the wall 1s absent in the experiments of Sabot and Comte-Belot (1976).

Tle skewness for eachi veloeity component is plotted in Figures 8,9 and 10. The
data generally agree with the KN results and experimental data of Barlow and John-
ston (1985) and Kreplin and Eckelmiann (1979). The notable exception is the normal
component of veloeity where KM aud DAG agree bhut differ significantly with the
experitnental data. The Hatuess for cacly velocity component is plotted in Figures 11,
12 and 13. The agreement between the DAG aud the experimental data is again quite
g()(ﬂl.

The root mean square vorticity for DAG 1s plotted Figure 14 and shows excellent
acrecinent with the KN data and the experiments of Kastrinakis and Eckelmann
19535 The DAG spanwise vortieity shows precisely the sime minimum near the wall
at abont rho= 5 asin the KN resnlt. KA postnlate the existence of wall layer

vortical struetures to cxplain this unexpeeted result. The flatness and skewness for the
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fluctuating component of vorticity are plotted in Figures 15 and 16 for which there are
no comparisons available.

Generally it can be concluded from these comparisons that the mean statistics of
the DAG dataset compare well with the highly resolved data of KMM. Our calculations
confirm the minimum in the spanwise vorticity as seen in the KMM work. These cal-
culations also confirm, in agreement with IXMMI, spanwise and wall-normal turbulence
intensities that are lower than experimental values.

It is clear that the use of the Green function method improves the one-point
statistics computed with the unmodified Orszag-Iells method (i.e. the DA dataset).
However, an important issue has been raised by the results presented above. This
issue stems from the observation that simulations like those discussed here produce
one-point statistics which are remarkably close to those produced by the fully resolved
simulations of KMM. It certainly cannot be claimed that if one achieves good one-
point statistics that fundemental turbulent dynamics are also being captured. Indeed,
conditional sampling performed on the current data (Section 3.3) indicates a bursting
rate that is lower than experiment. On the other hand, it is difficult not to conclude
that the underlying large scale (or coherent structures), which are being adequately
resolved at the resolutions presented here, must be dominating the global behavior of
the flow so that the modest resolutions employed here are adequate to achieve good
overall results. Certainly this is not a strong argument to justify the use of marginal
resolution but it does suggest that expansion functions determined from, for example,
a Karhunen-Loeve expansion (Lumley,1970) may be adequate to capture the essential

dynamics.
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3.2 Two point statistics

Using the DA data set, we have computed the complete two point correlation
function for the flow in the following manner. For any given realization of the flow,

u(x.t), we compute its Fourier coefficients, by:

;\~l~1‘\r3—l 9 i i
S(n.m,ay) = Z u(l,k,r2)e 1 e Na
=0 k=0
where
i =+vV-1,
]\71
n =0, Y + 1,
and , A
—N3 3
m = > ,7 -1 (35)

In these expressions we have implicitly defined collocation points (z1), and (z3),, and

and (k3),  as follows:

wavenumbers (k) m

n

(.’lfl )l =1x Ll/]\?la

(23)x = k x L3 /N3,

i 27 3.6
('l)n-nxf;’ (3.6)
‘)/
(.}"3)711 =mX i}a

in which L, and L3 are the domain lengths in the streamwise and spanwise directions
respectively. In (3.5) time serves merely as a parameter which may be used to identify
any given flow realization and is therefore suppressed. We now follow Sirovich(1987)
who suggests that the geometric symmetries of a flow should be exploited to increase
the effective munber of realizations that arve used in the averaging process. For the case
of channel flow. the equations of motion are invariant with respect to wall normal re-
flection. spanwise reflection, and rotation about the strecamwise axis. These symmetries

vield additional spectral representations of the flow which can be written:
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&' = {®,°(n,m, —13), —®,%(n,m, —x4), ®3%(n,m, —x2)}
Qz = {q)lo(n» —m, T )a @20('1’ —m, I )3 _@30(7?'1 —m, T2 )}
&3 = {3,%n,—m.—23), -8 (n, —1n, —22), —83%n, —m, —1q)}.

(3.7)

In these expressions, the superscripts 1, 2, and 3 refer to vertical reflection, span-
wise reflection, and streamwise rotation symmetries respectively and the zero super-
script refers to the unaltered (spectral) representation of the flow. The subscripts
continue to represent the coordinate directions as previously defined. The (complex)

spectrum ¥,43 can now be computed from:

3
Uop(n,m,aa,22') = (%ZW(n,m, 2)®57(n,m, z2")) (3.8)

p=0

where,

a,f=1,2,3.

The overbar designates complex conjugate, and the brackets represents an average over
all 30 realizations in the DA dataset. We note that in addition to the increase in the
effective size of the data base by a factor of four, the symmetries have the additional
advantage of reducing the size of ¥, 3 also by a factor of four. A factor of two comes
from the spanwise symmetry which insures that ¥,z is unique for n > 0 and m > 0.
A second factor of two comes from the vertical reflection symmetry which gives unique
values of the spectrum for —1 < 3 < 0 and —1 < x3’ < 1. The two point correlation

function , R, 3, can now be obtained from:

|2

-1

L

2xnli 2xmkd

Uag(n,m,ra,r2')e Nt ¢ N3 (3.9)
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resolution remaining unchanged) and also by running at higher absolute grid resolution.
We also note, in Figure 18b, a clear example of the errors induced by the Orszag-Kells
algorithm near the wall. The curve labeled a, for x,* = 0.602 appears to be completely
unrelated to the other curves in Figure 18h. For this distance from the wall the vertical
component of velocity undergoes a much too rapid loss of streamwise correlation. This
peculiar behavior must be connected to the boundary condition inconsistency problem
described in Section 2. It is interesting-to note, however, that this error shows up in
the correlation function only for the vertical velocity component and then only very
near the wall. This does not imiply however. that, other errors are produced which are
not localized to the wall region. Indeed. as described in Section 3.1, we found some loss
of velocity fluctuation intensity in the buffer region. Finally, we note the interesting
behavior in the streamwise correlation curves for the spanwise velocity shown in Figure
18c. The clear separation of the curves below 2,* = 14.76 and those above r,* = 28.3
is evident which suggests that the spanwise velocity structurc is particularly sensitive
to the differences between inner and outer layer physics.

In Figure 19 we present the wall normal dependence of the correlation function
by plotting Ras(z2,22"'). That is we plot Ros given by (3.9) with [ = & = 0. The
correlations for the streamwise velocity (Figure 19a) are positive except for a weak
negative correlation for 435.7 < r»* < 77.2 which appear at values of x5’ across the
centerline of the channel. Such weakly negative correlations also appear in isotropic
turbulence (see Hinze, 1975). The wall normal velocity correlations shown in Figure
19b are positive everywhere with the exception of the wildly oscillating positive and
negative behavior for x2* = 0.602. Again, this behavior is attributed to the operator
splitting errors discussed previously. In Figure 19d we present the results for R;5 and
note that this function does not peak when 22’ = 25 and indeed there is no theoretical
reason for the peak to occur there. We note, for example, that close to the wall, say
for 0 < x,'* < 25. the peaks occur clearly at values of a3'™ for which x,'* > z5*.

The spanwise velocity correlation function shown in Figure 19¢ shows the most
iteresting behavior. We first note that for the curves 0 < @2* < 21.07. the correlation
1s always positive as we move into the wall. The curve for rp* = 28.37 shows the

first negative correlation values near the wall. All curves show negative correlation for
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some values of ro'. when 2’ > »ro. Oue possible mterpretation of these correlations
is that near the wall there is a streamwise oriented vortex at rqo* &~ 20. That is, we
interpret the curve for o2* = 21.07 as the contér of the wall vortex since its correla-
tion coetficient 1s almost zero but still sligl tly positive near the wall. This location
of the wall vortex center is consistent with the interpretation of the vorticity intensity
profiles. The second minima (i.e.. the maxi:ium negative values which exist for eacl
curve for r»' > ry) moves away from the wall roughly in proportion to ro. That is.
the scale of motion seen by observers farther from the wall is proportional to their
distance from the wall. We remark, however, that any attempt to interpret these. or
any other long-time correlation functions in terms of some proposed flow structures
without the addition of flow visualization information is highly speculative. That is.
there could be many possible flow structures which could be used to explain any set
of correlation functions. The striking features of the Rsz function, however, do ap-
pear to be in agreement with the currently accepted viewpoint that streamwise vortex
structures exist near the wall. We also remark that perhaps the most objective way
of reconstructing a given three dimensional flow from the complete three dimensional
correlation function is by means of more sophisticated statistical approaches such as
the orthogonal decomposition proposed by Lumley(1970).

Finally. in Figure 20 we compare our calculations with the measurements of Comte-
Bellot(1965). We note first that these measurements were at a Reynolds number of
30.000. a factor of 12 greater than in our calculations. This accounts for the consid-
erably more rapid decay in the measured correlations. We note in particular that the
measnrements show small negative correlation values for 2y for the middle curve of
Fignre 20a and the two (negative) minima in R33. These characteristics are both in

excellent agreement with our caleulations.,
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3.3 Conditional Sampling Results
3.3.1 Purpose

Conditional sampling of a turbulent channel flow is a heuristic scarch for events
or conditions which appear to have some relevance to the kinematics and dynamics of
the flow. The search is usually based on some pre-conccived idea or hypothesis which
1s used as a condition. When the flow is conditionally sampled, the statistics about
the occurences of the events can be determined. Some statistics of interest may be the
frequency of occurence of the detected events, the ensemble average of the events, or a
histogram of some property associated with the detected event.

Conditional sampling has been used by many investigators to detect turbulent
bursts. A turbulent burst is an ill-defined event or sequence of events which is re-
spounsible for the gencration of a disproportionate amount of the Reynolds stress and
turbulent kinetic energy. In a single turbulent burst, there may be several ejections
of low speed fluid from the wall region into the core. In addition, associated with the
turbulent burst is a shear layer which i1s usually detected as a sweep (ufy > 0,u] < 0).

The ensemble average of the conditionally sampled cvents is considered to be a
representive event of the flow physics for a short period of time (say 10t*). The rapid
fluctuations seen in turbulent flow limit the significance of the ensemble after a short

time.
3.3.2 The One And Two Point Detections

There were two objectives to the one and two point detection tests. The first
objective was to determine if similar timing statistics and ensemble averages could be
obtained from the numerical data sct. Two standard detection schemes, the Variable
Interval Time Averaging scheme (VITA) aud the Sccond Quadrant Detection schenme
(Q2) were used. They were applicd without taking advantage of the spatial character

of the data: that is they were used as an experimnentalist would have applied them.
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The second objective was to determine the proximity of two events in space and time.
For example. a particular test was to determine how close two related @), events are in
time.

The VITA detection scheme is based on the observation that large fluctuations in
the streamwise velocity occur during a typical burst. These large fluctuations are caused
by a shear layer passing by the detector. The VITA technique measures the strength
and thickness of the shear laver by using a threshold parameter, k, and an averaging
time interval, T,. When the short time variance, properly normalized, exceeds the
threshold. k, a burst is detected. An additional condition of the sign of Qa'—’tl is frequently
used. Unless noted in this work only positive slope events (%”tl > 0) are retained.

The Reynolds stress can be sorted into the four quadrants in the u} — u} plane.
(See table 3.2) The second quadrant Reynolds stress algorithm, or the @2 detection
algorithm is based on the observation that to be important, turbulent bursts must
develop Reynolds stresses, and second quadrant Reynolds stresses would be the defin-
ing property of turbulent ejections. In this detection scheme, an event is considered
significant if the magnitude of second quadrant Reynolds stress rises above a predeter-
mined level. Both of these algorithms, along with others, are described in Luchik and
Tiedermann (1987).

Table 3.2
Reynolds Stress Quadrant

Quadrant  u'y u'y  Physical Process

Q, >0 >0 Interaction
Q- <0 >0 Ejection
Qs >0 <0 Interaction
Qs >0 <90 Sweep
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Table 3.3

Intra-Burst Ejection Time Scale

Uldevel @3 threshold.h Intra-Burst ejection timescale

0.0 0.5 12.3
0.0 1.25 15.2
0.0 2.0 19.9
-0.5 0.5 11.2
-0.5 1.25 13.0
-0.5 2.0 16.0
-1.0 0.5 9.9
-1.0 1.25 11.0
-1.0 2.0 11.9
-1.5 0.5 9.5
-1.5 1.25 10.4
-1.5 2.0 10.6

The timescale discussed above relates two ejection events passing a single detector.
Of related interest is the probability of a second event being detected after an initial
detection. For example, how likely is the detection of a ; event at a location x; and
time T given that a detection has occured at a different location z; and time T7. We
may also ask how likely is a VITA event to follow or lead a @, event by some time
span. With this approach the relationship between differing detection schemes can be
studied.

The simulated flow was conditionally sampling at 32 points in the spanwise direc-
tion (Ax} = 20) at two streamwise locations. Then the following probability variable

was developed. It is not a normalized probability, but rather a probability relative
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to a random occurence. Before defining the probability variable, let us introduce the
following notation: Ty(7.n) and Ty(i.n) is the detection time of an event i at spanwise
location n and streamwise location x;(1) and x1(2), respectively, where z1(1) is the
primary location and r1(2) is the secondary location. Furthermore, introduce a time
shift T, = T, — T,. The parameter we want to define is the probability of detecting an
event i at the location Ti(i.n) given a detection j at Ty(j,n). This parameter is there-
fore a function of the two detection schiemes applied, the shift in time, Ty, and the shift
in the streamwise direction X, = r1(2) —r1(1). We therefore define the probability. p.
as follows:

. 1 ) . . .
X, Ty = —i—l{ number of events at T,(7,n) given a detection at Ty(i,n)},

where N is the total number of events detected at streamwise location v (1). For large
time separations, the events at the two streamwise locations become uncorrelated. and
the probability becomes the frequency of the detection of the Ty events. Therefore, if
the probability above is renormalized by the mean detection period of the T, events, the
resulting probability is a measure of the likelihood that a detection will occur relative
to the random detection.

Some of the main results are as follows:

(1) Positive slope VITA events are less dispersive as they convect. When the primary
and secondary detectors use VITA and X7 = 240, two peaks in the relative probability
can be scen. The first peak. centered in time about the convective shift 20t*. 1s a
result of those events detected at the primary location. A second peak, centered about
a convective shift of —40#* is a result of thosc cvents which will be detected at the
primary locationn.

(2) For X7 = 240, the @2 events show a similar two peaked behavior, but the peaks

have spread wider than for the VITA events. This implies that the convection speed

for the ), events is more varied than for the VITA events.




Table 3.4

Program Flow Chart for Detection and Indexing of Streaks

Input/Output Routine Process
Velocity Fields — Lss.ftn Finds All Streaks
|
Sorted Streaks — Resort.Ftn Sorts Streaks In Time
l
Sorted and Indexed «— Timing.Ftn Develops Statistics
Streaks Deletes Short Streaks

Typical low speed streaks can be seen in Figures 23 and 24. Figure 23 is a plan
view of the plane y* = 15. Figure 24 is a view looking upstream at the point 7 = 0.
Both figures are of the streamwise veloeity. The shaded regions indicate where the
fluctuating velocity is less than —u';, The markers indicate where the streaks have
been detected and followed. There are ten detected streaks at this point in time.
Three in the vicinity of 27 = 400 and 23 = 300 are weakly defined.

The spacing of the detected streaks is about 100 to 130 viscous lengths apart,
whicl is consistent with experiments. Depending on the parameters used in the Lss.ftn
program. the average streak spacing was between 105 and 115 viscous lengths.

We also find (Fig. 24) that the locations detected occur under or near ‘tunnel’
shaped shear surfaces. Consider the detections at 25 = 90 and 190, which were typical
of smooth. steady, non-meandering low speed streaks. The locations 23 = 340 and
530 come after the passage of a streak and are weakly defined since the streaks may
have lifted away from the wall. Note that inflection veloeity profiles can be seen near

3 = 70. 350 and 320. all of which are near low speed streaks.
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Figure 25 shows the evolution of the normal velocity along a low speed streak in
the streamwise direction (the horizontal axis) as a function of time (the vertical axis).
The convection speed of the velocity perturbations remains about 10u* even though
the streamwise velocity in the streak is about 8 — 9u*. A typical pair of @2 events is
located at t* = 30 and 23 = 200. At t* = 20 and +* = 350 a perturbation in the normal
velocity is developing in front of an existing one. This is the development of a new @,
event. The existing and the new perturbation may be related to the pair at 50, 200.

Unfortunately. the scheme which finds the initial streaks is not very robust. If a
streak develops a kink or dips below the plane in which the searching is done, it may be
evaluated as two streaks and the continuity in time is lost. Experimentally, the effects
of low speed streaks can be seen for a few thousand viscous time units. but when using
the algorithms developed on the data available, less that 3% of the detected streaks
lasted more than 200#*. Better results are expected when the algorithm is applied

closer to the wall, where tlie flow is more stable.
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4. Cenclusions

We have investigated, in some detail. the statistical properties of turbulent flow in
a channel using data generated from moderate resolution direct numerical simulations.
Both long-time averages and conditional averages were computed. We have concluded
that the use of the Green function method results in turbulence statistics which are
significantly closer to experiments than those produced with the Orszag-Kells algo-
rithm (Section 3.1). However. the velocity fluctuation intensities are still somewhat
lower than those produced by the fully resolved KNIM calculation. This is particularly
trie for the wall-normal and spanwise velocities. However. the vorticity profiles are
in excellent agreement with the KNI results. For the two-point statistics presented
in Section 3.2 we find that the spanwise correlation lengths are in excellent agreement
with the NN results when Reynolds number differences are taken into account. The
streamwise correlation lengths, particularly those of the streamwise velocity compo-
nent. are somewhat larger than the IKXMM result. We speculate that Reynolds number
differences. box length differences, and resolution may all be contributing to these
discrepancies. The wall-normal dependence of the spanwise veloeity corvelation fune-
tion. Ry3(ro. "), shows behiavior which is suggestive of near wall steamwise vortical
structures. The wall-normal dependence of each correlation function shows excellent
qualitative agreement with the measurements of Comte-Bellot.

The three conclusions to the conditional sampling work are: (1) the low speed
streak tracing is able to follow in space and time the low speed streaks, but the method
needs to he applied closer to the wall: (2) to determine temporal statistics, a dataset
with a longer domain is needed. and: (3) the results from the two point conditional
sampling scheme indicate that there is a very definite correlation between VITA and
(), events and that the model proposed in Leighton (19806) is at least partially correct.
Further developments in conditional sampling will require an improved dataset and will
be finished i the near future.

We have ford that aliasing errovs have significant effects on the final steady-state

solutions to the Navier-Stokes equations for channel flow (Appendix A). When the




calculation has converged to the predicted steady-state value of the wall shear stress and
aliasing errors are not eliminated, we find that both the mean velocity and the centerline
velocity converge to values which are significantly lower than experimental values. In
addition. the velocity fluctuation intensities, particularly that of the streamwise velocity
component. are too low in amplitude and peak at distances too far from the wall. We
conclude that aliasing errors produce solutions which appear stable but which are very
much like the flow of underdeveloped turbulence. Aliasing errors appear to have a
damping effect on the turbulence. The strength of these effects may well be due to the
low resolution of these calculations. bhut what appears to us to he most interesting is that
when these errors are removed, the solution goes quickly back to that of experimentally

observed turbulence.
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Appendix

A. Effects of Aliasing Errors on the Behavior of Channel Flow Turbulence Calculations

1. Introduction

It has been known for some time that aliasing errors can have unwanted effects
-

on spectral calculations. In fact, in low resolution calculations, aliasing crrors can lead
to catastrophic numerical instabilities. Before discussing the details of the effects of
aliasing in turbulent channel flow calculations, however, we first give a brief review of
the mathematical origin of aliasing errors. We first begin with a simple example of
aliasing effects arising in the representation of a continuous one-dimensional function.
We assume that we are given a continuous function which is represented by an infinite

(convergent) Fourier series. That is, u(2) is given by:

u(z) = Z apetts (A1)
k=—o0
where
~ 1 o —itkr
up = u(z)e™ M dx.

27 Jo

Now. we suppose that we sample the continuous function at the discrete points, z; =
2—1’\':1,]‘ =0....N — 1. It follows that:

1\'/2_1
u(ay) = Z uretkss (A2)
k=—N/2
and.
1 N-1 ‘
up = N ulz;)e™ ki, (A3)
N~




That is, we clearly distinguish the continuous Fourier modes from the discrete modes.

To find the relationship between these two sets of modes we write:

1 N—-1 ]
up= g2 D dkeltreTr, (44)
T j=0k=-00
or
[e%] 1 N-—-1
* __ . T k—p)x;
Up = Z Y Z° "y
hk=-00 1=0
where
1 Rzl 1. ifk mN m=0,+£1...;
L g (1 ik p =Y w2051 p
N j__z;) 0 otherwise. (43)

Therefore, we find the following relationship between the discrete and continuous

modes:

o0
u; =1, + E UpsmN- (A6)
mM:=— 00

m$#0

The second term on the right represents the aliasing errors which contaminate the
discrete Fourier representation of u(x). We note that if there is no energy in u(z) beyond
mode N then these errors vanish and the disercte coefficients equal the continuous
cocfficients.

In Navier-Stokes calculations, aliasing errors arise from the non-linear terms in the
equations of motion. For example, the term u X w gives rise to errors when the rota-
tional form of the equations are used. In pseudo-spectral calculations we perform the
nonlinear product of velocity and vorticity in physical space as opposed to computing
the convolution sums which would arise if a purely Galerkin procedure were used. This
procedure of performing the non-linear calculation in physical space has been shown

by Orszag(1971Dh) to be considerably more efficient then the Galerkin approach but
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then aliasing errors may contaminate the calculation. A simple example will clarify

the mathematical origin of aliasing due to nonlinearities. We are given the discrete

representation of two functions u(2) and v(2) as follows:

N/2-1
u(zj) = Z uz.eik’f, (AT)
k=—N/2
and
N/2-1
v(ej) = D vpelt, (48)
p=—N/2
where
2x
Ty = T\?J
3 =0,1,..... N —1.
The product of these functions is then given by:
zj= Z thk*vp*ei(k+p)rf, (A9)
ko p
where
zj = u(aj)v(r;y)
and the Fourier coefficients of =; are:
N-1
' (A10)

Now we use, again, the identity:
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N-1
1 i(h+p—q)z; { 1, if k4p—g=mN m=0,%1,..;
J— — ’ ’ ’ ’ , All
N j—z% ¢ 0 otherwise. ( )

(A10) becomes:

zy = Z urvp* + Z Z up*v,”. (A12)

(k,p) m=-—o5 (k,p)
k+p=q m#0  ktp—g=mN

However, we note the following inequalities;

w| =

Ipl, ]k lq , (A13)

and

Rt
1<

max(p+k —g¢q) =

[CV]

Since %V— < 2N it therefore follows that | m |< 1. The final result becomes:

z, = Z up*vp® + Z up*vpy® + Z up*vp®. (Al4)
(.p)

(k,p) P (k.p)
k+p=gq ktp=q+N k+p=q-N

The last two terms on the right hand side of (A14) are termed aliasing errors. We

observe that if all modes —12! > (k,p) > %’— and—',sﬂ > (k.p) > —“—2ﬁ are removed from

the spectral representation of v and v and if their product is taken in physical space,

then there can be no aliasing errors in the region 7\/ > q > %/—, and'TN > q > :25-

This fact was first observed by Orszag (1971a). We note that this so called ‘two-

thirds rule’ works because, for example, when £ + ¢ > % aliasing errors are dumped
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into the region —‘qﬂ >q > —_3! Since this region of the spectrum is nulled after the
non-linear product is taken, the calculation is alias-free. We note that to insure an
alias-free calculation one-third of the modes is the minimum number that need to be
removed and is therefore an optimal choice. In a typical three dimensional calculation
the dealiasing is traditionally performed only in the periodic plane and therefore in our
calculations dealiasing is performed using the “2/3 rule” in the x; — z3 plane. There
is some evidence, however, that in the non-liomogeneous direction, (2,) that aliasing

effects may be important (Zang and Krist(1987)).
2. Results from low Resolution Aliased Channel Flow calculations

A relatively long run was made using the Orszag-Iells algorithm with the boundary
condition, uz = 0 on rz = %1, applied in the pressure step in which aliasing errors
were not removed. We used 33 x 64 x 16 grid points in the x5, x3,and x; directions
respectively. The calculation was started with laminar initial conditions to which 2D
and 3D finite amplitude Orr-Sommerfeld modes were applied.

Before proceeding with a detailed description of the results, however, we review
the manner in which the flow is driven to a stcady-state. This is discussed in Handler,
Leighton. and Carroll(1987) but is reiterated here for the sake of completeness. First,
we note that in a physical experiment the flow is driven by a pressure gradient. In the
simulation, however, periodic boundary conditions are used in the streamwise direction
so that a differential pressure forcing cannot be prescribed. Thus, an external driving
force. f . is required in the equations of motion. We note, of course, that f is a
completely arbitrary function of space and time. If we define a control surface to be
that which encloses the entire computational domain, a momentum balance in the

streamwise direction gives:

— < ui(x,t) > dry = . . - )
or J_, 1(%,1) 2 pU2 U2

(A15)
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In this expression, <>, represents averaging over a horizontal plane, 7, is the
iustanianeous shear sucss at the wall, and f) is the sireamwise component of the force
per unit volume. The simple form of this expression is due to the use of periodic
boundary conditions which insures no net mass flow through the control surface and
no net forcing arising from normal stresses. It follows that for a globally steady flow

the time rate of change of momentum within the control volume must be zero, so that:

lim < 7, >= Ly lim < fi(x,t) >. (A16)
t—oo t—o00

This can be written in non-dimensional form as:

lm R*(t) = lim —1~ 2R, (A17)
t—oo p

Thus, if the arbitrary force reaches a limit as t — 0o, we can predict the final wall
Reynolds number.

Some global results of this aliased calculation are presented in Figures Al(a, b, c).
In this calculation, the force, %[%, was fixed at % and R = 4000, so that we can predict
from (A17) that the final Reynolds umber, R*, will be V4R = 126.49. We observe in
Figure Al(a) that R* initially increases rapidly as in the calculation of Orszag and
Patera (1983) but then. after the flow has gone through transition to turbulence, the
wall Reynolds number gradually decays to the predicted value. Some oscillations about
the predicted value of 126.49 occur but a dynamic equilibrium, that is a state in which
the driving force is balanced by shear stresses at the wall, has been achieved. We can
now usec the correlations introduced by Dean(1978) for fully developed channel flow to
determine values for Ry and R,,, the Reynolds number based on centerline velocity,
U.;. and that based on the average, or bulk, velocity U,,. We perform this calculation

by using the value R* = 126.49. The relationships:

T‘lU

Lol,?

= 0.073R,, ~% (A18)
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T~ y*? (A19)

/I
and
R*
= — A20
u R ( )
can be used to predict R,,, and the relation
gc — 1'28R1n—n.0116 (A21)

is used to predict the centerline velocity which can then be used to compute R¢. The
results of this calculation give R,, = 3697.5 and R, = 2151.3. From Figures Al(b)
and Al(c) we find that, at the end of the calculation, R,, = 4470 and R, = 2800.
Thus, we find that both the mean Reynolds number and centerline Reynolds number
are significantly higher then they would be in an experiment with this asymptotic value
of the wall shear stress. The effect of aliasing has been to give a larger mass flux for
the given pressure gradient (driving force) than for fully developed turbulence. This
gives a strong indication that the flow is not a fully developed turbulence. Evidence
for this is given in Figures 3(a, b) in which we have performed a somewhat different
calculation. Here we have used a fully converged solution which we obtained from
Steven Lyons at the Univ. of Illinois from an alias-free code as an initial condition
to our (aliased) code. We note that the effect of aliasing was first (Figure A2(a)) to
increase the centerline velocity and cause a dramatic loss of the logarithmic region
of the mean velocity profile that was clearly present in the initial condition. The
final velocity profile is very similar to that obtained by Patel and Head (1969) in
transitional (underdeveloped) turbulent channel flow. We also observe in Figure A2(b)
that the intensity of the streamwise velocity fluctuatioas are dramatically reduced and

the location of the maximum intensity has shifted farther from the wall.
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We also report on an independent test of the effeets of aliasing performed by Pand::

(1987) who performed low resolution chaumel ow calculations in which the dealiasin:
algorithim was turned on at an appropriate time in the calculation. These results are
shown in Fignres A3(a) and A3(h). We note rhat the effect of dealiasing was to cans:
a dramatic decrease in Jdie centerline velocity which is consistent with our results
There can be little doubt from these results that aliasing errors. at least for these low
resolution calculations, has a damping effect on the turbulence. We observe first this
the etfect 1s not clearly exhibited unless the calculations are run for very long times.
so that these errors have a chance to build and interfere in some way with the proper
solution to the equations. Secondly. and perhaps most importantly. the aliasing crror-
caused no catastrophic numerical instabilities. Instead. the effects were subtle i the
sense that earlier in the calculations (results not shown Lere) the mean veloeity profile
did exhibit a logarithmic layer which subsequently disappeared. In conclusion. aliasine
errors affect, in a significant manner. the long-time hehavior of the turbulent solution
to the equations of motion. We speculate that aliasing errors are acting very much
like an external forcing which has both the proper phase and amplitude to cause some

damping, but not a complete destruction of the turbulence.




B. Calculation of Energies from Fourier Spectra

When Fourier spectra are computed. as in (3.8), it is useful to check the results by
computing from them the mean square values, or energies, by integrating the spectra
over all wavenumbers. This result can then be compared with a ‘direct’ calculation of
the energy by squaring and averaging the physical variable of interest such as velocity
or pressure, for example. in its physical (spacc-time) representation. We derive here a
convenient expression for a real function of two (space) variables that can be used to
make such a check. We first define the real function u(x,y) and its Fourier cocfficients

ak.p as follows:

N/2-1 N/2-1

Ulm = Z Z ag,p, Clkrlﬁlrym (Bl)

—N/2p=~N/2
and,
N—1N-1
p = 7 3 X e T, (B2)
(=0 m=0
The physical lengths are defined by 2; = %l and y,, = 'IV . The mean square energy,
u?. is given by :
N-1N-1
'2=A>ZZ“’"" (B3)
=0 m=0
It follows from (B1) that:
N-1N-1
u? = " ik+k" )z i (PP ) ym
B30 SR B 3 S Cet 53
k.p k' p! =0 m=0
Use of the identities:
N _ .
il Z AP e { 1. ifp+p' =nN n=0.£1...; (B5)
0 otherwise.

m=0
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and N
N-—1
1 i(k+k"Y g { 1. ifk4+r =nN n=0.4£1,..;
v = ’ P B6
N ; ¢ 0 otherwise. (B6)

and the use of the reality of u. that is axp = a—x,—p. leads to the following expression

for the energy:

5 _ 2 2 2 2
u*=ago+a’xpot Gnp T AN oNpTt

N/2—-1 N/2-1 N/2=1
2{ Z Z |(1/\.p}2+ Z ]ao,l,lz
k=1 p=—N/2+1 p=1
N/2-1 N/2-1
+ Y JacxpplP + Y lakoxpl) (B7)
p=1 k=1

As discussed in Section 3.D, it is sometimes useful to unpose the symmetry condition
ar,p = ag -p. If this is done the encrgy becomes:

5 _ 2 2 2 2

us =ago+anp0 T -np2t N Nt

N/2=1N/2-1

£35S Jawl

k=1 p=1
Nj2-1 N/2-1
+2{ Z lak.ol® + Z lao.p)*}
k=1 p=1
N/2-1 N/2-1
+24 Z N Z le —ny21? ) (B8)
p=1 k=1

If we definie the Fourier coefficients as follows:
ago = 240w a_ny20 =24 xn/00

ag.-nj2 =249 _nja aonja—ng2 =24 N o N2
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ako = \/'Erh-,o ag.p = \/'5.40,,,
d_N/2.p = \/5—'1—.\'/2.1; ap -Nj2 = \/§Ak,-N/2 (B9)

and.
ak‘p == ‘Flk‘l)

1<k<N/2--1

B10
1<p<N/2-1. ( )
then the energy can be conveniently expressed as :
N/2N/2
u? =4 | Ak pl?. (B11)
k=0 p=0

(B11l) was used to compute the mean square energies from the spectra, 1,3. The
results for the root mean square values for the strcamwise, spanwise, and wall-normal
turbulence intensities are shown in Figure B1 and for the Reynolds stress ,ujis, in
Figure B2. One can see that these results are identical to the results obtained by
performing the ‘direct’ computation described in section 3.1 and shown in Figures 2
and 5. We conclude with a high degree of confidence that our calculaton of ¥,z is

correct.
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Fig. 17(a) — Spanwise dependence of the correlation function. Streamwise velocity. a: x» = 0.062. b:

x; = 125, Current results; ----, x5 = 5.39, ----, x5 = 149.23, KMM.
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Fig. 17(b) — Spanwise dependence of the correlation function. Wall-normal velocity. a: 2.402, b: 125,
Current results; ---, x; =539, --—- , 149.23, KMM.
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Fig. 17(c) — Spanwise dependence of the correlation function. Spanwise velocity. a: 0.602, b: 125, Current
results; ----, 5.39, ----. 149.23, KMM.
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Fig. 18(a) — Streamwise dependence of the correlation function. Streamwise velocity. a: x; = 0.602, b:
x, = 125, Current results; ---, x3 = 5.39, -, x; = 149.23, KMM.
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Fig. 18(b) — Streamwise dependence of the correlation function. Wall-normal velocity. a: 0.602, b: 2.402, c:
125, Current results; ----- . 5.39, ----, 149.23, KMM.
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18(c) — Streamwise dependence of the correlation function. Spanwise velocity. a: 0.602, b: 21.06, c:
Current results; ---, 5.39, ----, 149,23 KMM.
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Fig. 191 - Wall-normal dependence of the correlation coefficient. Streamwise velocity. a: x5 = 0.602. b:

Ay = 125.
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Fig. 19(b) — Wall-normal dependence of the correlation coefficient. Wall-normal velocity. a: 0.602, b: 125.
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Fig. 21 — Ensemblec average of the streamwise velocity for turbulent events detected with the VITA conditional
sampling scheme. The detection parameters are: & = [.0 and 7 = 16. The detection is located 15/* above
the wall.
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Fig. 22 — Ensemble average of the streamwise velocity for turbulent events detected with the Second Quadrant
Reynolds stress conditional sampling scheme. The detection threshold is & = 1.0. The detetion is located 15/*

above the wall.
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Fig. 23 — The fluctuating streamwise velocity contours in the buffer layer (x = 15). The markers are the
detected low speed streaks and the shaded regions indicate fluctuating velocities less than ~u, (x; = 15).
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Fig. 24 — The fluctuating streamwise velocity contours across the channel lookin
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Fig. 25 — The normal velocity (u,) in the vicinity of a low speed streak as a function of streamwise location
and time, (x; ,r*). The figure is of the velocity at a distance of x5 = 15. The regions of wavelike disturbance
are localized pockets of second and fourth quadrant Reynolds stress.
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Fig. Al(a) — Wall Reynolds number versus time. Time is scaled wit centerline velocity and channel half-
width. Grid resolution: 33 x 64 x 16, (y,z,x).
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Fig. Al(b) — Reynolds number based on mean velocity versus time.
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Fig. Al(c) — Reynolds number based on the centerline velocity versus time.
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Fig. A2(a) — Mean velocity profile versus time. Time is in viscous units. 1: 7 = 0, 2: r = 50, 3: ¢ = 100,
4: ¢t = 150, 5: ¢+ = 200.
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Fig. A2(b) — Streamwise velocity fluctuation intensity profiles. [:¢ =0, 2: ¢+ = 50, 3: r = 100, 4: r = 150,
St = 200.
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rig. A3(a) — Reynolds number behavior in channel flow turbulence with and without aliasing. (From Panda

(1987))
with dealiasing.

Wall Reynolds number versus time (viscous units). 33 X 64 x 16 grid: — without dealiasing, ----,
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Fig. A3(b) — Reynolds number behavior in channel flow turbulence with and without aliasing. (From Panda

(1987)). Centerline velocity versus time.
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